A branching algorithm to reduce computational time of batch models: Application for blast analyses

Author:

Dennis Adam A1ORCID,Smyl Danny J2,Stirling Chris G3ORCID,Rigby Samuel E1ORCID

Affiliation:

1. Department of Civil & Structural Engineering, University of Sheffield, Sheffield, UK

2. Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, Alabama, USA

3. Viper Applied Science (www.viper.as), Glasgow, UK

Abstract

Numerical analysis is increasingly used for batch modelling runs, with each individual model possessing a unique combination of input parameters sampled from a range of potential values. Whilst such an approach can help to develop a comprehensive understanding of the inherent unpredictability and variability of explosive events, or populate training/validation data sets for machine learning approaches, the associated computational expense is relatively high. Furthermore, any given model may share a number of common solution steps with other models in the batch, and simulating all models from birth to termination may result in large amounts of repetition. This paper presents a new branching algorithm that ensures calculation steps are only computed once by identifying when the parameter fields of each model in the batch becomes unique. This enables informed data mapping to take place, leading to a reduction in the required computation time. The branching algorithm is explained using a conceptual walk-through for a batch of 9 models, featuring a blast load acting on a structural panel in 2D. By eliminating repeat steps, approximately 50% of the run time can be saved. This is followed by the development and use of the algorithm in 3D for a practical application involving 20 complex containment structure models. In this instance, a ∼20% reduction in computational costs is achieved.

Funder

Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3