Affiliation:
1. Hohbach-Lewin Structural & Civil Engineers, San Francisco, CA, USA
2. Department of Computer Science, University of Arizona, Tucson, AZ, USA
Abstract
Current empirical and semi-empirical based design manuals are restricted to the analysis of simple building configurations against blast loading. Prediction of blast loads for complex geometries is typically carried out with computational fluid dynamics solvers, which are known for their high computational cost. The combination of high-fidelity simulations with machine learning tools may significantly accelerate processing time, but the efficacy of such tools must be investigated. The present study evaluates various machine learning algorithms to predict peak overpressure and impulse on a protruded structure exposed to blast loading. A dataset with over 250,000 data points extracted from ProSAir simulations is used to train, validate, and test the models. Among the machine learning algorithms, gradient boosting models outperformed neural networks, demonstrating high predictive power. These models required significantly less time for hyperparameter optimization, and the randomized search approach achieved relatively similar results to that of grid search. Based on permutation feature importance studies, the protrusion length was considered a significantly more influential parameter in the construction of decision trees than building height.
Subject
Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献