Shock qualification of low-cost blast resistant wheels by in field tests

Author:

Silvestri Paolo1ORCID,Naselli Giovanna Adele2,Cepolina Emanuela Elisa2,Zoppi Matteo1

Affiliation:

1. Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, Genova, Italy

2. Istituto Italiano di Tecnologia, Genova, Italy

Abstract

This paper presents the results obtained during an experimental campaign on blast resistant wheels designed for a low-cost demining machine, derived from an agricultural tractor. Such wheels must fulfil two requirements: first, they have to be able to retain their mechanical integrity in case of blast and still work after one or more explosions, in order to be able to drive the machine out of the minefield without human intervention; second, they must reduce as much as possible the amount of energy transferred to the vehicle, to protect the on-board equipment from the effect of the detonation of a landmine. One of the goals of the experimental activity was to compare two wheels characterized by different designs. Mechanical performance and capacity of the wheels to reduce the energy transferred to the vehicle have been assessed to verify whether the wheels were suitable for the task and to identify which wheel performs best. Physical integrity of both wheels was assessed by visual inspection after each explosion. To evaluate the energy transferred to the vehicle, a measurement of the potential energy transferred, by means of a ballistic pendulum, equipped with an encoder, was performed together with a triaxial acceleration measurement in correspondence of the wheel hub. The triaxial accelerometer measurement was then also used to assess the behaviour of the wheels mounted on the vehicle after tests on the ballistic pendulum. Wheel performances have been quantified using specific features and frequency domain functions, related to the damage induced by the vibration at the interface between the hub and the demining machine. The obtained results suggest that the heaviest wheel performs better both in terms of mechanical integrity and of shock response.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3