A shock tube facility to generate blast loading on structures

Author:

Aune Vegard12,Fagerholt Egil12,Langseth Magnus12,Børvik Tore12

Affiliation:

1. Structural Impact Laboratory (SIMLab), Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2. Centre for Advanced Structural Analysis (CASA), Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract

This study evaluates the performance of a new shock tube facility used to produce blast loading in controlled laboratory environments. The facility was found to generate a planar shock wave over the tube cross section by measuring the pressure distribution on a massive steel plate located at the end of the tube. The properties of the shock wave proved to be a function of driver length and driver pressure, and the positive phase of the measured pressure–time histories was similar to those generated from actual far-field explosive detonations. However, the shock tube is also suited to investigate fluid–structure interaction effects and the behaviour of materials in blast events. This was demonstrated using a three-dimensional digital image correlation technique to measure the deformation field of thin steel plates. Synchronization of the three-dimensional digital image correlation and pressure measurements enabled a thorough investigation of the entire experiment and identification of fluid–structure interaction effects. Finally, one-dimensional numerical simulations were performed to investigate the wave patterns during the experiments.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3