Analysis of cerebral venous sinus stenosis by flat panel angiographic CT (FP-CT) to guide treatment for idiopathic intracranial hypertension

Author:

Theiss Peter1ORCID,Nico Elsa1,Abou-Mrad Tatiana1,Tshibangu Mpuekela1ORCID,Madapoosi Adrusht1ORCID,McGuire Laura Stone1ORCID,Alaraj Ali1ORCID

Affiliation:

1. Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA

Abstract

Introduction Cerebral venous sinus stenting (CVSS) is an effective treatment for idiopathic intracranial hypertension (IIH) secondary to dural venous sinus stenosis. Traditional selection of patients for CVSS has been made by microcatheter manometry, but pressure measurements are often equivocal. Here we present the results of a series of cases in which venous flat-panel CT (FP-CT) was used as an adjunct to microcatheter manometry to improve decision making and precise stent placement during CVSS. Methods Ten consecutive patients with IIH underwent angiography with microcatheter manometry and venous FP-CT, with CVSS if indicated by the results. Cross-sectional measurements of the narrowed sinus were obtained on FP-CT before and after stenting. After the procedure, clinical outcomes were tracked. Follow-up with quantitative MRA with sinus flow measurements was also performed, when available. Results There was an exponential correlation between measured pressure gradient and degree of stenosis calculated using venous FP-CT. All patients with both a high degree of stenosis measured by FP-CT and a high pressure gradient across the stenosis showed a clinical benefit from stenting. Conclusions True measurement of the cross-sectional area of the dural sinus, made by venous phase FP-CT, has a high degree of correlation with elevated venous pressure gradient across the point of stenosis. Even in a limited series of cases, we found an exponential decrease in flow with increasing severity of stenosis. Furthermore, patients with both an elevated venous pressure gradient and critical stenosis of the sinus on FP-CT showed symptomatic improvement after stenting.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3