Harvesting Online Reviews to Identify the Competitor Set in a Service Business: Evidence From the Hotel Industry

Author:

Ye Fei1ORCID,Xia Qian12,Zhang Minhao3ORCID,Zhan Yuanzhu4,Li Yina1

Affiliation:

1. School of Business Administration, South China University of Technology, Guangzhou, China

2. College of Business, Guizhou Minzu University, Guiyang, China

3. Department of Management, University of Bristol, United Kingdom

4. Management School, University of Liverpool, United Kingdom

Abstract

In today’s global service industry, online reviews posted by consumers offer critical information that influences subsequent consumers’ purchasing decisions and firms’ operation strategies. However, little research has been done on how the same information can be used to identify key competitors and improve services to increase competitiveness. In this article, we propose an analytical framework based on an improved k-nearest neighbor model and a latent Dirichlet allocation model for service managers to harvest online reviews to identify their key competitors and to evaluate the strengths and weaknesses of their businesses. With a sample comprising over 8 million customer reviews of 6,409 hotels in 50 Chinese cities from Ctrip.com , we validate the effectiveness of the proposed approach in the analysis of a hotel’s service competitiveness and its key competitors. The findings indicate that the importance of particular attributes of a hotel varies in different segments according to hotel star ratings. This study extends the literature by bridging online reviews and competitor identification for service industries. It also contributes to practice by offering a systematic and effective way for managers to identify their key competitors, monitor market preferences, ensure service quality, and formulate effective marketing strategies.

Funder

The British Academy

Publisher

SAGE Publications

Subject

Organizational Behavior and Human Resource Management,Sociology and Political Science,Information Systems

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3