Affiliation:
1. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada
Abstract
In the present study, the shear stress response and the dynamic mechanical properties of an electrorheological fluid are experimentally investigated for small/large shear strain amplitude at moderate range of frequencies and different field intensities. A new efficient constitutive model has also been proposed, which can accurately predict the measured experimental data. Compared with the Fourier transformation rheology, the proposed model requires less number of parameters in order to predict the stress response and the mechanical properties, including storage and loss moduli for different strain amplitudes, frequencies, and field intensities. This leads to simplify the parameter identification in order to predict the material response using the optimization methods.
Subject
Mechanical Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献