Affiliation:
1. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, Canada H3G 1M8
Abstract
Magnetorheological dampers have been widely used in civil and automotive industries. The nonlinear behavior of MR fluid makes MR damper modeling a challenging problem. In this paper, a frequency dependent MR damper model is proposed based on Spencer MR damper model. The parameters of the model are identified using an experimental data based hybrid optimization approach which is a combination of Genetic Algorithm and Sequential Quadratic Programming approach. The frequency in the proposed model is calculated using measured relative velocity and relative displacement between MR damper ends. Therefore, the MR damper model will be function of frequency. The mathematical model is validated using the experimental results which confirm the improvement in the accuracy of the model and consistency in the variation damping with the frequency.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献