Effect of structural damping on the tuning between piezoelectric wafer active sensors and Lamb waves

Author:

Mei Hanfei1ORCID,Giurgiutiu Victor1

Affiliation:

1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Abstract

Piezoelectric wafer active sensors have been widely used for Lamb-wave generation and acquisition. For selective preferential excitation of a certain Lamb-wave mode and rejection of other modes, the piezoelectric wafer active sensor size and the excitation frequency should be tuned. However, structural damping depends on the structure material and the excitation frequency and it will affect the amplitude response of piezoelectric wafer active sensor–excited Lamb waves in the structure, that is, tuning curves. Its influence on the piezoelectric wafer active sensor tuning reflects the effect of structural health monitoring configuration considered in the excitation. Therefore, it is important to have knowledge about the effect of structural damping on the tuning between piezoelectric wafer active sensor and Lamb waves. In this article, the analytical tuning solution of undamped media is extended to damped materials using the Kelvin–Voigt damping model, in which a complex Young’s modulus is utilized to include the effect of structural damping as an improvement over existing models. This extension is particularly relevant for the structural health monitoring applications on high-loss materials, such as metallic materials with viscoelastic coatings and fiber-reinforced polymer composites. The effects of structural damping on the piezoelectric wafer active sensor tuning are successfully captured by the improved model, with experimental validations on an aluminum plate with adhesive films on both sides and a quasi-isotropic woven composite plate using circular piezoelectric wafer active sensor transducers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3