Design of a High-Efficiency Magnetorheological Valve

Author:

Yoo Jin-Hyeong1,Wereley Norman M.1

Affiliation:

1. Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 USA

Abstract

A high efficiency design was explored for meso-scale magnetorheological (MR) valves (< 25 mm OD with an annular gap < 1 mm). The objective of this paper is to miniaturize the MR valve while maintaining the maximum performance of the MR effect in the valve. The main design issues in the MR valve involve the magnetic circuit and nonlinear fluid mechanics. The performance of the MR valve is limited by saturation phenomenon in the magnetic circuit and by the finite yield stress of the MR fluid. When field is applied to the magnetic circuit in the MR valve, a semisolid plug (as a result of particle chain formation) forms perpendicular to the flow direction through the valve, and a finite yield stress is developed as a function of field. The resulting plug thickness is used to control flow rate through, and pressure drop across, the MR valve. The nondimensional plug thickness is evaluated as a basis for evaluating valve efficiency. Design parameters of the MR valve are studied and an optimal performance was designed using steel (Permalloy) material in the magnetic circuit. A maximum magnetic flux density at the gap was achieved in the optimized valve design based on a constraint on the outer diameter limitation. Valve performance was verified with simulation. A flow mode bypass damper system was fabricated and was used to experimentally validate valve performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3