Abstract
Abstract
In order to solve the problems of small pressure drop range and achieve lower response time and small power consumption of traditional control valves in automotive hydraulic lift, the magnetic circuit method was employed to design a new multi-ring and multi-disc magnetorheological valve based on magnetorheological fluid and its pressure drop mathematical model was established. Through the electromagnetic field simulation, the effect of current size, radial damping gap size, axial damping gap size and magnetic isolation thickness affect the performance of the multi-ring and multi-disc magnetorheological valve is studied. The pressure drop characteristics and response time of the multi-ring and multi-disc MR valve under different currents, different direction of loading current and different loads have been studied experimentally. The results show that the saturation pressure drop of the multi-ring and multi-disc MR valve is greater than 7 MPa, and the response time is 136 ms–178 ms, which proves the performance advantage of the multi-ring and multi-disc MR valve.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献