Enhanced magnetorheological effect and sedimentation stability of bimodal magnetorheological fluids doped with iron nanoparticles

Author:

Zhu Wanning1,Dong Xufeng1ORCID,Huang Hao1,Qi Min1

Affiliation:

1. Key Laboratory of Energy Materials and Devices, School of Materials Science and Engineering, Dalian University of Technology, Dalian, China

Abstract

The improvement of properties of magnetorheological fluids and mechanism study has long been a classic area within the field of magnetorheological materials. This article was undertaken to dope the iron nanoparticles synthesized by direct current electric arc discharge with the traditional carbonyl iron powders to prepare bimodal magnetorheological fluids with different doping ratios. Their rheological properties and sedimentation stability were evaluated to explore the influence rules and mechanisms. The results indicate that the effect of the addition of iron nanoparticles on rheological properties under magnetic field is a combination of two opposing factors such as the strengthening of the structure and the weakening of magnetization. The sedimentation stability of the bimodal magnetorheological fluids improved significantly with the increase in the proportion of iron nanoparticles, which is attributed to the help of both free state and adsorbed state iron nanoparticles in magnetorheological fluids. Furthermore, within a specific magnetic field strength range, the bimodal magnetorheological fluids with a small proportion of iron nanoparticles can achieve an improvement in both rheological property and sedimentation stability compared with carbonyl iron particles–based magnetorheological fluids.

Funder

national key research and development program of china stem cell and translational research

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3