A critical review of reduced one-dimensional beam models of piezoelectric composite beams

Author:

Luschi Luca1,Iannaccone Giuseppe1,Pieri Francesco1ORCID

Affiliation:

1. Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy

Abstract

Simplified one-dimensional models for composite beams with piezoelectric layers, which are intrinsically three-dimensional structures, are important for many applications, including piezoelectric energy harvesters. To reduce the dimensionality of the system, assumptions on the stress/strain state in the transverse direction are typically made. The most common are those of null transverse stress, used for narrow beams, null transverse deformation, used for wide beams, and continuous interface strain, suited for thin piezoelectric layers (we call this assumption thin film continuous). We show that the models based on these assumptions are often used uncritically for beam geometries for which large errors may result. In particular, null transverse stress fails even for narrow beams if the thickness is much smaller than the beam width. We give clear geometric criteria that, for any geometry, allow the selection of the most accurate model among the three. We also develop a single, unified beam equation encompassing the three models and compare the analytical results from this equation with finite element simulations over a wide range of beam lengths, widths, and layer thicknesses. The selection criteria and the unified beam equation form a valuable tool for fast and accurate design of composite piezoelectric beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3