Nonlocal large-amplitude vibration of embedded higher-order shear deformable multiferroic composite rectangular nanoplates with different edge conditions

Author:

Gholami R1,Ansari R2,Gholami Y2

Affiliation:

1. Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2. Department of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

Based on the nonlocal elasticity theory, a unified nonlocal, nonlinear, higher-order shear deformable nanoplate model is developed to investigate the size-dependent, large-amplitude, nonlinear vibration of multiferroic composite rectangular nanoplates with different boundary conditions resting on an elastic foundation. By considering a unified displacement vector and using von Kármán’s strain tensor, the strain–displacement components are obtained. Using coupled nonlocal constitutive relations, the coupled ferroelastic, ferroelectric, ferromagnetic, and thermal properties of multiferroic composite materials and small-scale effect are taken into account. The electric and magnetic potential distributions in the nanoplate are calculated via Maxwell’s electromagnetic equations. Furthermore, Hamilton’s principle is utilized to obtain the mathematical formulation associated with the coupled governing equations of motions and boundary conditions. The developed model enables us to consider the effects of rotary inertia and transverse shear deformation without using any shear correction factor. Also, it can be degenerated to the models based on the Kirchhoff and existing shear deformation plate theories. To solve the large-amplitude vibration problem, an efficient multistep numerical solution approach is utilized. Effects of various important parameters such as the type of the plate theory, and parameters of nonlocality and coupled fields on the nonlinear frequency response are investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3