Size-Dependent Nonlinear Vibrations of First-Order Shear Deformable Magneto-Electro-Thermo Elastic Nanoplates Based on the Nonlocal Elasticity Theory

Author:

Ansari Reza1,Gholami Raheb2

Affiliation:

1. Department of Mechanical Engineering, University of Guilan, P.O. Box 41635-3756, Rasht, Iran

2. Department of Mechanical Engineering, Lahijana Branch, Islamic Azad University, P.O. Box 1616, Lahijan, Iran

Abstract

This paper deals with the size-dependent geometrically nonlinear free vibration of magneto-electro-thermo elastic (METE) nanoplates using the nonlocal elasticity theory. The mathematical formulation is developed based on the first-order shear deformation plate theory, von Kármán-type of kinematic nonlinearity and nonlocal elasticity theory. The influences of geometric nonlinearity, rotary inertia, transverse shear deformation, magneto-electro-thermal loading and nonlocal parameter are considered. First, the generalized differential quadrature (GDQ) method is utilized to reduce the nonlinear partial differential equations to a system of time-dependent nonlinear ordinary differential equations. Afterwards, the numerical Galerkin method, periodic time differential operators and pseudo-arc length continuation algorithm are employed to compute the nonlinear frequency versus the amplitude for the METE nanoplates. The presented methodology enables one to describe the large-amplitude vibration characteristics of METE nanoplates with various sets of boundary conditions. A detailed parametric study is carried out to analyze the important parameters such as the nondimensional nonlocal parameter, external electric potential, external magnetic potential, temperature change, length-to-thickness ratio, aspect ratio and various edge conditions on the nonlinear free vibration characteristics of METE nanoplates. The results demonstrate that considering the size effect on the vibration response of METE nanoplate results in decreasing the natural frequency, a remarkable increasing effect on the hardening behavior and subsequently increasing the nonlinear-to-linear frequency ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3