Vibration Investigation of Circular Graphene Sheet with Geometrical Defect Considering Two-Phase Local/Nonlocal Theory Exposed to the Magnetic Field

Author:

Ayoubi Pejman1ORCID,Ahmadi Habib1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Shahrood University of Technology Shahrood, Iran

Abstract

In this work, the mixed local/nonlocal elasticity theory is developed for the investigation of the vibration of a circular graphene sheet with a structural defect located in a magnetic field. When graphene is placed in a magnetic field, the Lorentz force is applied to it, which is calculated using Maxwell’s equations. The insufficiency of Eringen’s nonlocal theory (ENT) caused some authors to employ the two-phase theory (TPT) to study nanostructures. Geometric imperfections can happen in the manufacturing process of graphene sheets. Lots of these imperfections can be modeled as a hole. So, in this work, an imperfection is considered as the centric hole. Governing equations, in Newtonian formulation, are extracted in the integrodifferential form. The boundary conditions are selected as clamped at inner and outer edges. To discretize the equation of motion we employ Galerkin’s approach. The solution is validated using a comparison study between the presented results and those that exist in the literature, and the accuracy of the suggested approach is verified. The effectiveness of the mixture parameter, magnetic field, radius of imperfection, and nonlocal parameter is examined on the natural frequency. The results exhibit that an increase in the mixture parameter and magnetic field increases the natural frequency of the graphene sheet.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3