Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations

Author:

Erturk Alper1

Affiliation:

1. Georgia Institute of Technology, G. W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0405, USA

Abstract

This article formulates the problem of vibration-based energy harvesting using piezoelectric transduction for civil infrastructure system applications with a focus on moving load excitations and surface strain fluctuations. Two approaches of piezoelectric power generation from moving loads are formulated. The first one is based on using a bimorph cantilever located at an arbitrary position on a simply supported slender bridge. The fundamental moving load problem is reviewed and the input to the cantilevered energy harvester is obtained to couple with the generalized electromechanical equations for transient excitation. The second approach considers using a thin piezoceramic patch covering a region on the bridge. The transient electrical response of the surface patch to moving load excitation is derived in the presence of a resistive electrical load. The local way of formulating piezoelectric energy harvesting from two-dimensional surface strain fluctuations of large structures is also discussed. For a thin piezoceramic patch attached onto the surface of a large structure, analytical expressions of the electrical power output are presented for generalized, harmonic, and white noise–type two-dimensional strain fluctuations. Finally, a case study is given to analyze a small piezoceramic patch for energy harvesting from surface strain fluctuations along with measured bridge strain data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3