Monitoring of pin connection loosening using eletromechanical impedance: Numerical simulation with experimental verification

Author:

Fan Shuli12,Li Weijie12,Kong Qingzhao2,Feng Qian3,Song Gangbing2ORCID

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China

2. Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX, USA

3. Hubei Key Laboratory of Earthquake Early Warning, Institute of Seismology, China Earthquake Administration, Wuhan, China

Abstract

Pin connection, as an important structural connection mechanism, is widely used in various structures, especially spatial structures. In this article, numerical and experimental investigations are performed for monitoring the loosening of pin-connected structures using the electromechanical impedance technique. For this purpose, a finite element model for a pin-connected structure considering the contact interfaces between the pin and the support base is proposed to study the effect of pin connection loosening on the electromechanical impedance signatures. A multi-physics analysis is conducted to simulate the electromechanical behavior of lead zirconate titanate transducers bonded on the pin head and the steel base. The relationship between the force applied on the pin connection and the variation in electromechanical impedance signatures is established. Experiments are carried out to verify the accuracy of the proposed finite element model. The results show that the changes in the electromechanical impedance signatures consist of frequency shifts and peak splitting. The contact condition of the pin connection can be assessed by observing the changes in the electromechanical impedance signatures. The location of the piezoelectric patch has significant effect on the sensitivity of the electromechanical impedance signatures. The numerical study in this research helps to optimize the design of sensor placement and improve the detection accuracy of the electromechanical impedance method in practical applications of detecting the loosening of pin-connected structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3