Detection of the Bolt Loosening Angle through Semantic Key Point Extraction Detection by Using an Hourglass Network

Author:

Ying Yu123ORCID,Shichuan Wei1ORCID,Wei Zhao4ORCID

Affiliation:

1. Department of Civil Engineering, Shantou University, Shantou, Guangdong Province, China

2. Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou, Guangdong Province, China

3. Key Laboratory of Structure and Wind Tunnel of Guangdong Higher Education Institutes, Shantou, Guangdong Province, China

4. College of Road and Bridge, Zhejiang Institute of Communications, Hangzhou, Zhejiang Province, China

Abstract

Damage in bolts, which are used as connecting fasteners in steel structures, affects structural safety. Sophisticated machine vision methods have been formulated for the detection of loose bolts, but their accuracy remains an area for improvement. In this paper, a method based on a stacked hourglass network is proposed for automatically extracting the key points of a bolt and for obtaining the bolt loosening angle by comparing the rotations of the key points before and after the bolt is damaged. A data set containing 100 images of key bolt loosening points was collected, and rotation was performed as data augmentation to yield 1800 images. Moreover, a method was designed for automatically annotating the augmented image data set. In this study, 70%, 10%, and 20% of the annotated image data set were used for training, validation, and testing, respectively. Subsequently, a neural network model based on a stacked hourglass network was established to train the annotated image data set. The detection results were evaluated in terms of normalized errors (NEs), percentage of correct key points (PCK), detection speed, and training time. In testing, the proposed method accurately and efficiently identified the bolt loosening angle, with a PCK value as high as 99.3%. The accuracy of the proposed method was also highly robust to different shooting distances, viewing angles, and illumination levels.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3