Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects

Author:

Stanton Samuel C1,Erturk Alper2,Mann Brian P3,Dowell Earl H3,Inman Daniel J4

Affiliation:

1. US Army Research Office, Durham NC, USA

2. G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

3. Department of Mechanical Engineering, Duke University, Durham, NC, USA

4. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI

Abstract

Nonlinear piezoelectric effects in flexural energy harvesters have recently been demonstrated for drive amplitudes well within the scope of anticipated vibration environments for power generation. In addition to strong softening effects, steady-state oscillations are highly damped as well. Nonlinear fluid damping was previously employed to successfully model drive dependent decreases in frequency response due to the high-velocity oscillations, but this article instead harmonizes with a body of literature concerning weakly excited piezoelectric actuators by modeling nonlinear damping with nonconservative piezoelectric constitutive relations. Thus, material damping is presumed dominant over losses due to fluid-structure interactions. Cantilevers consisted of lead zirconate titanate (PZT)-5A and PZT-5H are studied, and the addition of successively larger proof masses is shown to precipitate nonlinear resonances at much lower base excitation thresholds while increasing the influence of higher-order nonlinearities. Parameter identification results using a multiple scales perturbation solution suggest that empirical trends are primarily due to higher-order elastic and dissipation nonlinearities and that modeling linear electromechanical coupling is sufficient. This article concludes with the guidelines for which utilization of a nonlinear model is preferred.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3