Design and experimental research of a magnetorheological elastomer isolator working in squeeze/elongation–shear mode

Author:

Tao Yu1,Rui Xiaoting1,Yang Fufeng1,Chen Gangli1,Bian Leixiang1,Zhu Wei1,Wei Min1

Affiliation:

1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing, P.R. China

Abstract

Due to the properties of controllable stiffness and damping, a novel isolator based on magnetorheological elastomers is introduced in this article. According to the experimental results, the initial vertical stiffness and damping coefficient of the magnetorheological elastomer isolator are 1.14 × 106 N/m and 495.8 N s/m, respectively. The relative increase in stiffness and damping is 66.57% and 45.55%, respectively. The isolation transmissibility and root mean square of acceleration response are reduced by 41.2% and 65.3%, respectively. To describe the magnetic-induced stress–strain relationship of the anisotropic magnetorheological elastomers, a theoretical model is presented as magnetorheological elastomers working in squeeze/elongation and shear modes simultaneously. Then, the stiffness formula relating to the magnetic field, strain, and the other demanding parameters is deduced. The analytical results of the stiffness formula are fairly in agreement with the experimental data.

Funder

Doctoral Program of Higher Education

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3