Development of an electrorheological elastomer isolator working in shear-squeeze mixed mode

Author:

Niu ChenguangORCID,Dong XufengORCID,Xiong Xiaoyan,Ren Junqi,Niu Linkai,Li Congming,Zhang Dongguang,Guo Jibao

Abstract

Abstract The vibrating screen equipment will resonate through the resonance region during startup and shutdown stage. However, the stiffness and damping of the traditional passive vibration isolator cannot be adjusted in use, which leads to the unsatisfactory vibration isolation effect of that on the installation foundation of vibrating screen. In this paper, based on the characteristics of electrorheological elastomer (ERE) with tunable storage modulus, a variable stiffness ERE isolator in shear-squeeze mixed mode is developed. At the first step, the EREs used for the isolator was prepared, and the dynamic viscoelastic properties were measured. After that, the structure of ERE isolator was designed, and the vibration isolation effect of the ERE isolator for vibrating screen was analyzed by simulation. The simulation results demonstrate the resonance amplitude and stopping time of the vibrating screen in startup and shutdown stage will decrease with the ascending electric field strength. Finally, the shear-squeeze mixed-mode ERE isolator was tested on electro-dynamic shaker. The experimental results indicate that the ERE isolator has a better effect of vibration reduction with increased electric field strength in startup and shutdown stage of vibrating screen, and the acceleration transmissibility by ERE isolator is reduced 37.6% under 3 kV mm−1.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3