Effective phase transformation behavior of NiTi triply periodic minimal surface architectures

Author:

Alagha Ali N.12,Nguyen Viet12,Zaki Wael12ORCID

Affiliation:

1. Advanced Digital & Additive Manufacturing Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

2. Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Abstract

The effective behavior of shape memory alloy triply periodic minimal surface (TPMS) structures is investigated using finite element analysis and numerical homogenization. The TPMS unit cells considered are primitive, IW-P, gyroid, and diamond subjected to different loading conditions. Under uniaxial displacement-driven loading, the results show a dramatic increase in effective stress and martensite volume fraction with increased relative density of the TPMS unit cell. Comparison among the four types of TPMS unit cells shows that diamond has superior mechanical performance for the loading cases considered. Based on numerical homogenization results, the onset and subsequent thresholds of phase transformation are determined for all four unit cells considering multiaxial loading. At lower relative density, the loading surfaces corresponding to the onset of phase transformation were reasonably well represented by either von Mises or Hill’s criteria. The observed fit with the von Mises model degenerated with increased effective martensite volume fraction, while a proper fit was maintained with Hill’s criterion. Subsequent loading surfaces, corresponding to monotonically increasing martensite volume fraction, show a nonlinear hardening behavior, which seems to follow a similar trend regardless of geometry. The loading surfaces were found to reach asymptotic states with distinctly different features compared to their initial shapes.

Funder

Khalifa University of Science and Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3