Effective Initial and Subsequent Loading Surfaces for Phase Transformation in TPMS-SMAs

Author:

Alagha Ali N.1,Van Viet Nguyen1,Zaki Wael1

Affiliation:

1. Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Abstract

Abstract In this paper, the effective behavior of shape memory alloy (SMA) triply periodic minimal surface (TPMS) structures is investigated by means of finite element analysis and numerical homogenization. For this purpose, the onset and subsequent thresholds of phase transformation are determined considering TPMS primitive, gyroid, and diamond unit cells subjected to different loading conditions. At all relative densities studied, the initial phase transformation loading surfaces corresponding to the different geometries considered are found to be reasonably well represented by the anisotropic Hill’s and von Misses yield criterions. The observed surfaces, either shrink or expand as the effective martensite volume fraction increases, depending on TPMS geometry. The determination of subsequent loading surfaces as a function of the effective volume fraction of martensite shows a nonlinear hardening behavior, which seems to follow a unique trend for the different geometries considered. Ultimately, the loading surfaces are found to reach an asymptotic state with distinctly different features compared to their initial shapes.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3