Design and analyses of axial semi-active dynamic vibration absorbers based on magnetorheological elastomers

Author:

Yang Zhirong12,Qin Chunyun1,Rao Zhushi1,Ta Na1,Gong Xinglong3

Affiliation:

1. Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai, China

2. Marine Engineering Institute, Jimei University, Xiamen, China

3. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei, China

Abstract

Magnetorheological elastomers are a new kind of magnetorheological materials mainly composed of polymer rubber and micro-sized magnetizable iron particles. Dynamic vibration absorbers based on magnetorheological elastomers are widely used in vibration systems with small amplitude since they have the advantages of no sealing equipments, good stability, and rapid response. In this article, a shear-mode semi-active dynamic vibration absorber based on magnetorheological elastomers is proposed, and the dynamic design principle of an axial semi-active dynamic vibration absorber attached to ship shafting is studied. The material preparation of magnetorheological elastomers and their properties under different magnetic fields are discussed. The structure of a single semi-active dynamic vibration absorber is designed, and theoretical analysis of shift-frequency property of a single semi-active dynamic vibration absorber is also investigated. The magnetic flux density of magnetorheological elastomers in the semi-active dynamic vibration absorber is analyzed using ANSYS software. A compact and efficient semi-active dynamic vibration absorber for shafting axial vibration control is proposed. Furthermore, a linear relationship is found between the excitation current and the natural frequency of a single semi-active dynamic vibration absorber. The results show that the designed axial semi-active dynamic vibration absorbers have better performance than classic passive dynamic vibration absorbers in terms of frequency-shift property and vibration absorption capacity.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3