Piezoelectric wind energy harvester for low-power sensors

Author:

Sirohi Jayant1,Mahadik Rohan1

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA

Abstract

There has been increasing interest in wireless sensor networks for a variety of outdoor applications including structural health monitoring and environmental monitoring. Replacement of batteries that power the nodes in these networks is maintenance intensive. A wind energy–harvesting device is proposed as an alternate power source for these wireless sensor nodes. The device is based on the galloping of a bar with triangular cross section attached to a cantilever beam. Piezoelectric sheets bonded to the beam convert the mechanical energy into electrical energy. A prototype device of size approximately 160 × 250 mm was fabricated and tested over a range of operating conditions in a wind tunnel, and the power dissipated across a load resistance was measured. A maximum power output of 53 mW was measured at a wind velocity of 11.6 mph. An analytical model incorporating the coupled electromechanical behavior of the piezoelectric sheets and quasi-steady aerodynamics was developed. The model showed good correlation with measurements, and it was concluded that a refined aerodynamic model may need to include apparent mass effects for more accurate predictions. The galloping piezoelectric energy-harvesting device has been shown to be a viable option for powering wireless sensor nodes in outdoor applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in piezoelectric wind energy harvesting: A review;Results in Engineering;2024-03

2. Design development and testing of traffic induced wind based artificial tree type hybrid energy harvester for wireless sensor nodes;Results in Engineering;2023-12

3. Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester;Micromachines;2023-11-26

4. Design and analysis of an exponentially tapered piezoelectric energy harvester under nonlinear rotational indirect magnetic excitation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-10-21

5. E3D;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3