Stretching, Tapping, or Compressing–What Role Does Triboelectricity Play in the Signal Output from Piezoelectric Nanogenerators?

Author:

Akbarinejad Alireza12ORCID,Fiedler Holger3ORCID,Nguyen Jade4,Li Zifan4,Gito Donn Adam1,Sherrell Peter C.56ORCID,Ellis Amanda V.6ORCID,Aw Kean4ORCID,Malmstrom Jenny12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Auckland Auckland 1142 New Zealand

2. MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington P.O. Box 600 Wellington 6140 New Zealand

3. GNS Science National Isotope Centre Lower Hutt New Zealand

4. Smart Materials and Microtechnologies Group Department of Mechanical and Mechatronics Engineering The University of Auckland Auckland 1010 New Zealand

5. School of Science STEM College RMIT University Melbourne VIC 3001 Australia

6. School of Chemical and Biomedical Engineering The University of Melbourne Parkville VIC 3010 Australia

Abstract

AbstractPiezoelectric energy generation is relevant for developing advanced electronics. However, the poor understanding of the influence of triboelectricity as an alternate charge generation mechanism has, in many cases, resulted in the reporting of exaggerated piezoelectric outputs. Herein, the signal output is systematically investigated from a range of organic piezoelectric materials (poled polyvinylidene fluoride (PVDF)), moderately piezoelectric (heat‐treated PVDF), and non‐piezoelectric (non‐poled PVDF), polytetrafluoroelthylene (Teflon) and nylon) under tapping and compression (33 direction) and stretching (31 direction) in both encapsulated and non‐encapsulated forms. This findings reveal that regardless of their piezoelectric properties, all tested materials exhibit substantial voltage outputs (4.2–4.6 V) during tapping, primarily attributed to the triboelectric effect at the contact interface. The triboelectric contribution to the signal is reduced by 99% in compression mode for non‐piezoelectric materials and the piezoelectric signal is the primary contributor in the stretching mode with a high signal output of 7.71 V N−1 for poled PVDF and a negligible signal (0.01–0.12 V N−1) for non‐piezoelectric materials. Moreover, elastomeric encapsulation is demonstrated to markedly increase triboelectric signals in tapping mode. These results have important implications for the future design of piezoelectric‐triboelectric devices and the accurate interpretation of the data obtained from such devices.

Funder

Ministry of Business, Innovation and Employment

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3