Diagnosis of Menière’s disease on MRI: feasibility at 1.5 Tesla

Author:

Kenis Christoph1ORCID,Crins Tom23,Bernaerts Anja4,Casselman Jan45ORCID,Foer Bert De4

Affiliation:

1. Department of Radiology, Sint-Franciscus Hospital, Heusden-Zolder, Belgium

2. Department of ENT, Sint-Franciscus Hospital, Heusden-Zolder, Belgium

3. Department of ENT, Jessa Hospital, Hasselt, Belgium

4. Department of Radiology, GZA Hospitals Antwerp, Wilrijk, Belgium

5. Department of Radiology, AZ Sint-Jan Hospital AV, Bruges, Belgium

Abstract

Background Menière’s disease (MD) is clinically characterized by the triad sensorineural hearing loss, tinnitus and/or aural fullness, and vertigo. Endolymphatic hydrops (EH) is the histopathological basis associated with MD, which can be demonstrated on magnetic resonance imaging (MRI). Currently, most studies are done on a 3-T MRI scanner and to date it is believed that EH can only be demonstrated on a 3-T magnet. We report the feasibility of demonstrating EH on a 1.5-T scanner using the standard 20-channel head and neck coil and the current standard 4-h delayed intravenous gadolinium-enhanced three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequence. Purpose To investigate whether current standard 4-h delayed intravenous gadolinium-enhanced 3D-FLAIR imaging can demonstrate endolymphatic hydrops on a 1.5-T MRI scanner. Material and Methods The 3D-FLAIR sequence was taken from a 3-T MRI protocol and tested on a volunteer patient with clinically “definite” MD, after 4-h delayed intravenous contrast injection. Good image quality was obtained after reducing both the matrix and the bandwidth, with clear demonstration of EH. Subsequently, eight more patients with unilateral disease were imaged. Five patients had “definite” MD and four had “probable” MD. Results We imaged nine patients with unilateral disease and detected EH in eight of nine ears. One patient with “probable” MD did not show any abnormality, but the images were degraded by motion artifacts. Conclusion At a cost of 2 min extra scanning time compared to a 3-T scanner, EH can be confidently demonstrated with the current standard 3D-FLAIR sequence on a 1.5-T magnet.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3