MR imaging of endolymphatic hydrops in Ménière’s disease: feasibility at 1.5 T

Author:

Ben Lakhal AmineORCID,Boukriba Seif,Bechraoui Rim,Mannoubi Sondes,Mizouni Habiba

Abstract

Abstract Background Ménière’s disease is a chronic condition of the inner ear that causes vertigo, tinnitus and hearing loss. Its diagnosis relies on clinical criteria that are subjective and pure-tone audiometry results that are not specific. Its pathological substrate is endolymphatic hydrops. Its imaging was recently made possible by the late-enhanced 3D FLAIR sequence. This technique was primarily tested on 3 T. Our objective was to prove its feasibility using a 1.5 T magnet. Methods We conducted a prospective study including 30 patients who fulfilled the Bárány society criteria for Ménière’s disease. We performed the late-enhanced 3D FLAIR sequence on all patients. We used it to look for and grade endolymphatic hydrops in the utricle, the saccule and the cochlear canal using the Kahn method. Results We found endolymphatic hydrops in all of the 30 patients who fulfilled the diagnostic criteria for Ménière’s disease. We had no false positives and only one false negative with a patient presenting with bilateral disease clinically but having endolymphatic hydrops only on one side. Thus, our correspondence rate between clinical and imaging findings was 97%. Conclusions It is possible to diagnose endolymphatic hydrops with the late-enhanced 3D FLAIR sequence using a 1.5 T MRI machine. Since Ménière’s disease diagnosis is sometimes tricky, imaging endolymphatic hydrops can aid in the diagnosis when the clinical picture is incomplete. It also helps guide invasive treatment plans.  Feasibility at 1.5 T ensures broader access to the late-enhanced 3D FLAIR sequence. Beyond the scope of Ménière’s disease, this sequence offers the possibility to better understand pressure-related inner ear diseases.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3