Impact of different b-value combinations on radiomics features of apparent diffusion coefficient in cervical cancer

Author:

He Yaoyao12ORCID,Rong Yi3,Chen Hao1,Zhang Zhaoxi1,Qiu Jianfeng2,Zheng Lili1,Benedict Stanley3,Niu Xiaohui4,Pan Ning56,Liu Yulin1,Yuan Zilong1

Affiliation:

1. Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China

2. Medical Engineering and Technology Center, Taishan Medical University, Taian, PR China

3. Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA, USA

4. College of Informatics, Huazhong Agricultural University, Wuhan, PR China

5. College of Biomedical Engineering, South Central University for Nationalities, Wuhan, PR China

6. Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan, PR China

Abstract

Background The impact of variable b-value combinations on apparent diffusion coefficient (ADC)-based radiomics features has not been fully addressed in literature. Purpose To investigate the correlation between radiomics features extracted from ADC maps and various b-value combinations in cervical cancer. Material and Methods Diffusion-weighted images (b-values: 0, 600, 800, and 1000 s/mm2) of 20 patients with cervical cancer were included. Tumors were identified with the largest transversal cross-section and manually segmented by radiologist. For each b-value combination, 92 radiomics features were extracted and coefficient of variance (CV) was used to evaluate the robustness of radiomics features with different b-value combinations. Features with CV > 5% were normalized by the mean feature variation across the group. Results Out of a total of 92 radiomics features, 18 were classified as robust features with CV ≤5%. Among the rest (CV > 5%), 11, 23, and 40 features demonstrated 5%< CV ≤10%, 10%< CV ≤20%, and CV > 20%, respectively. A subset of features in each category (CV > 5%) showed strong correlation with the b-value combination variation, including 44% (7/16) features in gray level co-occurrence matrix, 62% (8/13) features in gray level dependence matrix, 64% (9/14) features in first order, 50% (8/16) features in gray level run length matrix, 57% (8/14) features in gray level size matrix, and 20% (1/5) features in neighborhood gray-tone difference matrix. Conclusions Variations in b-value combinations demonstrated impact on radiomics features extracted from ADC maps for cervical cancer. The radiomics features with CV <5% can be considered as robust features and are recommended to be used in multicenter radiomics studies.

Funder

Natural Science Foundation of Hubei Province

Taishan Scholars Program of Shandong Province

China National Key Research and Development Program

Applied Basic Research Programs of Wuhan

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3