A new method for visualizing pulmonary artery microvasculature using synchrotron radiation pulmonary microangiography: the measurement of pulmonary arterial blood flow velocity in the high pulmonary blood flow rat model

Author:

Tokunaga Chiho1,Matsushita Shonosuke2,Sakamoto Hiroaki1,Hyodo Kazuyuki3,Kubota Misao4,Tanioka Kenkichi5,Hiramatsu Yuji1

Affiliation:

1. Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan

2. Tsukuba University of Technology, Ibaraki, Japan

3. High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan

4. NHK Science and Technical Research Laboratories, Tokyo, Japan

5. Tokyo Denki University, Tokyo, Japan

Abstract

Background Increased pulmonary blood flow (PBF) and shear stress may provoke irreversible vascular remodeling, yet invasive visualization of the microvasculature complicates monitoring. A non-invasive imaging methodology would therefore safely provide mechanistic insights into the progression of high PBF-induced vascular remodeling. Purpose To establish a novel microvasculature visualization method using synchrotron radiation pulmonary microangiography (SRPA) that can also calculate PBF velocity in vivo. Material and Methods A high PBF rat model was established by making a fistula between the abdominal aorta and inferior vena cava. After eight weeks, SRPA was performed and the dynamic density changes in the right lower pulmonary artery (PA) were calculated by software. SRPA was performed with a HARP (High-Gain Avalanche Rushing amorphous Photoconductor) receiver. PBF velocity was calculated by contrast medium transit time within the PA. All data were presented as mean ± standard error (SE). Student's t-test was used for comparison between the two groups. Results High dynamic spatial and contrast resolution from SRPA in the PA allowed for clear pulmonary microangiography and accurate detection of higher PBF in the rat model (82.3 ± 8.5 mm/s high-PBF group vs. 46.1 ± 4.3 mm/s control group, P < 0.01). Conclusions These novel results demonstrate that SRPA was useful in both visualizing the dynamic flow distribution within the microvasculature and calculating PBF velocity. This newly developed, non-invasive technology may become a powerful tool in clarifying the mechanism of vascular remodeling associated with high PBF-induced shear stress.

Funder

JSPS KAKENHI

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3