Planar curved path following controller for a small fixed-wing unmanned aerial vehicle with constrained parameters optimized by nonlinear model predictive control

Author:

Chen Yang1ORCID,Zeng Wei1,Wang Chaolei2,Wu Yongliang3

Affiliation:

1. School of Physics and Mechatronics Engineering, Longyan University, Longyan, China

2. Beijing Institute of Electronic System Engineering, Beijing, China

3. School of Aeronautics and Astronautics, Xihua University, Chengdu, China

Abstract

Path following presents a pivotal challenge within the realm of small fixed-wing unmanned aerial vehicles. Firstly, a Lyapunov-stable path guidance law was formulated to follow specific planar curved paths. To ensure differentiability of the guidance law, a modified, smooth saturation function was derived. Secondly, an analysis was conducted to ascertain the interrelationship between control parameters and input constraints, thereby identifying the relevant parameter domains. Thirdly, the nonlinear model predictive control technique was harnessed to optimize both guidance law parameters, enhancing the unmanned aerial vehicle’s capacity to achieve optimal performance in both straight-line and circular path following, hereafter referred to as PFC_NMPC. By leveraging Lyapunov stability arguments for switched systems, the stability of the corresponding nonlinear switched system was guaranteed. In this study, square and circular paths were generated to assess the path-following control of a simulated fixed-wing unmanned aerial vehicle. The performance of various guidance laws, including those with fixed parameters (PFC), those with parameters tuned using fuzzy logic (PFC_FL), PFC_NMPC, vector field, and pure pursuit with line-of-sight, was compared. Notably, the proposed PFC_NMPC method exhibited the ability to expedite the unmanned aerial vehicle’s convergence to the desired path while maximizing the effective flight path length.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3