Robotic scanning free-space measurement system for electromagnetic performance evaluation of curved radar absorbing structures

Author:

Din Salah ud1,Hyun Jong-Min1,Son Dae-Sung1,Lee Jung-Ryul1ORCID

Affiliation:

1. Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Abstract

Radar absorbing structures are manufactured for stealth missions and total quality inspection applies to evaluate their performances before assembly to stealth weapon systems. This study adopted a six-axis robot arm to move a target specimen in a scanning free-space measurement system for electromagnetic performance evaluation. The six-axis robot arm completely enables the system to maintain the specimen at the focal point of the antenna and solves the issue of curvature effect on the return loss results of the curved specimens, faced in the two- and three-axis scanning free-space measurement systems. The six-axis robotic scanning free-space measurement system uses a RobotStudio to extract the position and orientation of each target point on the specimen to be evaluated and uses a robotic scanning algorithm to transform all the points into a scan path. The system was verified by variable and constant curvature radar absorbing structure specimens with frequency selective surfaces. Return losses ( S 11s) of the nonsymmetrical cambered airfoil specimen and S-shaped double curvature specimen that could not be accurately evaluated with a three-axis stage-based scanning free-space measurement system were measured by the six-axis robotic scanning free-space measurement system. All the specimen results adhere to the theoretical parameters of the specimen. The transition region results of the S-shaped specimen were studied using effective radius of curvature. Finally, the inspected results of the S-shaped specimen were curvature compensated to check the effect of negative and positive curvature on the specimen resonance frequency performance.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Modeling and Simulation of Six-axis Manipulator Based on D-H Coordinates;2023 International Conference on Electronics and Devices, Computational Science (ICEDCS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3