Dynamic stability analyzes for a parallel–serial legged quadruped robot

Author:

Fu Jianxun1ORCID,Gao Feng2

Affiliation:

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China

2. Shanghai Jiao Tong University, Shanghai, China

Abstract

One of the basic characteristics of the walking robots is the maintenance of their dynamic balance during the walk, and the stability of legged robots in locomotion is necessary. In the past few years, the dynamics of legged robots was studied based on very simple or simplified leg structures. A more complete dynamic model is essential for the further research of a practical legged robot. As an important enrichment in stability study for a walking robot, a stability measure named as moment ratio stability margin is introduced, which takes all stability factors into formulation. The mechanical structure of a novel parallel–serial legged mechanism is introduced. Based on this structure, the performance of the proposed method is demonstrated. The advantages and practical significance of the proposed technique are illustrated by comparing it with conventional methods. The experimental study is carried out to evaluate and characterize the performances of this method.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applied Research of Agricultural Quadruped Robots;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

2. Type Synthesis of a Novel 4‐Degrees‐of‐Freedom Parallel Bipedal Mechanism for Walking Robot;Advanced Intelligent Systems;2023-11-27

3. Development of a Biomimetic Underwater Robot for Bottom Inspection of Marine Structures;International Journal of Control, Automation and Systems;2023-11-03

4. Perspective Of Vision, Motion Planning, And Motion Control for Quadruped Robots;Highlights in Science, Engineering and Technology;2023-03-16

5. IoT-enabled monitoring and controlling system for robotic operations;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3