A patch-based real-time six degrees of freedom object pose refinement method for robotic manipulation

Author:

Yang Yang12,Jiang Qian12,Mu Quan3,Huang Hanlin12,Yang Tian12,Li Wenbo12,Yuan Yilin12,Wen Jian4,Liu Fei12ORCID

Affiliation:

1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China

2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China

3. Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, People’s Republic of China

4. PowerChina Sichuan Electric Power Engineering Co., Ltd, Chengdu, Sichuan, People’s Republic of China

Abstract

A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement approaches have been proposed to improve the accuracy by utilizing rendered images from a 3D model. Nevertheless, balancing speed and accuracy in an industrial setting remains a challenge for these methods. In this study, we propose a novel six degrees of freedom pose refinement approach centered around matching real image patches. Unlike previous approaches, our method does not rely on a 3D model, resulting in increased speed and accuracy. In the offline phase, we construct an offline database using image patches obtained from real images. During the inference phase, our method initially identifies the image patch within the offline database that is closest to the initial pose. Subsequently, we refine the six degrees of freedom pose by matching the corresponding image patches from the offline database. Experimental results indicate that our six degrees of freedom pose refinement method achieves real-time capability with a frame rate of 71 Frames Per Second (FPS), along with high precision. When the threshold is set to 0.5% of the object diameter, the average distance of dots score on the test data surpasses 70%. Moreover, experiments involving gripping and assembling tasks on an industrial robot demonstrate the ability of our method to autonomously select appropriate grasping angles and positions in real time. It further generates suitable motion paths, ultimately ensuring production efficiency.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3