Radiological urban threat due to special protective actions from security forces

Author:

Castro Mariana SC1,Reis André Luiz Q21,Stenders Ricardo M3,Alves Isabela Santos4,Amorim Jose Carlos C1,Silva Ademir Xavier da5,Andrade Edson R215ORCID

Affiliation:

1. Defense Engineering Graduate Program, Military Institute of Engineering, Brazil

2. Graduate Program in Development and Environment (PRODEMA), Federal University of Paraiba, Brazil

3. FAAP, Faculty of Economics, Graduate Program, Brazil

4. IBMEC, Faculty of Engineering, Graduate Program, Brazil

5. Nuclear Engineering Graduate Program, Federal University of Rio de Janeiro (COPPE/UFRJ), Brazil

Abstract

The neutralization of suspicious objects by a conventional explosion in public places seems to be an option often considered by security forces. A radiological dispersive device (RDD) uses a radioactive material coupled to an amount of conventional explosive in order to contaminate an area. Extremist groups may take advantage of such protocol by leaving the radioactive material in public places to provoke suspicion, thus leading to the neutralization by an explosion, which in turn creates a RDD event. This work aims to discuss the influence of such a protocol in the radiological threat by means of computational simulation. The total maximum effective dose equivalent (TEDE Max), the Pasquill–Gifford atmospheric stability classes (PG classes), and the potentially affected population size were evaluated. The results consider two radionuclides Cs-137 and Sr-90. The findings allow us to infer that TEDE Max and surface contamination are strongly dependent on the PG classes. In addition, the affected population size depends on the plume size, which seems to be independent of the radionuclide, but not of the PG classes. Therefore, PG classes play a key role in the radiological threat. The findings may be of value to support decisions when facing an event.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human and Environmental Bias Affecting Risk Perception in Military Radiological and Nuclear Operations;Defence Science Journal;2023-03-13

2. Radiological risk evaluation applied to aerial evacuation procedures in a nuclear scenario;Journal of Radiological Protection;2022-09-01

3. Life-shortening effects of radiological weapons in military operations;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3