How AI founders on adversarial landscapes of fog and friction

Author:

Wallace Rodrick1ORCID

Affiliation:

1. Division of Epidemiology, The New York State Psychiatric Institute, USA

Abstract

Formal analysis, based on the asymptotic limit theorems of control and information theories, uncovers sufficient conditions for punctuated failure across the full spectrum of real-time cognitive process – essentially a generalization of the Yerkes-Dodson law – challenging recent assertions that instabilities in AI deep learning paradigms can be easily remedied, permitting their use in real-world critical systems. A temperature analog for cognition that is itself an order parameter is determined by rates of internal information transmission, sensory or intelligence input, and material resource availability. Phase transitions driven by the synergisms of such parameters express symmetry-breaking changes in groupoids characteristic of cognition at and across scales and levels of organization, significantly extending models abducted from physical theory. No modifications of current – or future – AI or other cognitive systems can or will be immune to failure when facing sophisticated adversarial challenge under conditions of friction and the fog-of-war. We indicate how to reconfigure these results for study of long-term conflict on ‘Sun Zu Landscapes’ of deception, deceit, and subtle influence under Lamarckian selection.

Publisher

SAGE Publications

Subject

Engineering (miscellaneous),Modeling and Simulation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress-induced failure of embodied cognition: A general model;BioSystems;2024-05

2. Fog, Friction, and Failure in Organized Conflict: A Formal Study;Axioms;2024-02-06

3. Hallucination, panic, and exhaustion in embodied cognition;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2023-11-01

4. The democratic offset: Contestation, deliberation, and participation regarding military applications of AI;AI and Ethics;2023-05-02

5. Afterward;SpringerBriefs in Evolutionary Biology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3