Using malware for software-defined networking–based smart home security management through a taint checking approach

Author:

Wang Ping1,Chao Kuo-Ming2,Lo Chi-Chun3,Lin Wen-Hui1,Lin Hsiao-Chung1,Chao Wun-Jie1

Affiliation:

1. Department of Information Management, Kun Shan University, Tainan, Taiwan

2. DSM Research Group, Faculty of Engineering and Computing, Coventry University, Coventry, UK

3. Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan

Abstract

Numerous security concerns exist in smart home systems in which Internet of Things devices are connected through a home network to enable control using a centralised gateway with a handset device from the Internet. Safeguarding personal information privacy is an increasing concern in smart living services. To guarantee the mobile security of smart living services, security managers use taint checking approaches with dynamic taint propagation analysis operations to examine how a software-defined networking app uses sensitive information and investigate suspicious security vulnerabilities of devices and the effects of the spread of taint propagation over the Internet by identifying taint paths. For solving the dynamic taint propagation analysis problem, most approaches focus on cloud computing applications (apps) with malware threat analysis that involves program vulnerability analyses, rather than on the risk posed by suspicious apps connected to the cloud computing server. Accordingly, this article proposes a taint propagation analysis model incorporating a weighted spanning tree analysis scheme for tracking data with taint marking using several taint checking tools with an open software-defined networking architecture for solving the dynamic taint propagation analysis problem. In the proposed model, Android programs perform dynamic taint propagation to analyse the spread of risks posed by suspicious apps connected to the centralised gateway in a smart home system. In probabilistic risk analysis, risk and defence capability are used for each taint path to assist a defender in recognising the attack results against network threats caused by malware infection and to estimate the losses of associated taint sources. A case of threat analysis of a typical cyber security attack is presented to demonstrate the proposed approach. A new approach was used for verifying the details of an attack sequence for malware infection by incorporating a finite state machine to appropriately represent the real dynamic taint propagation analysis situations at various configuration settings and safeguard deployment. The experimental results proved that the threat analysis model enables a defender to convert the spread of taint propagation to loss and estimate the risk of a specific threat using behavioural analysis associated with 60 families of real malware. Consequently, our scheme was significantly effective in predicting the risk and loss of tainted data propagation for security concerns in smart home systems when the number of taint paths associated with the propagation rules discovered through taint analysis was increased.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Reference16 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inconsistency Detection-Based LOD in Smart Homes;International Journal on Semantic Web and Information Systems;2021-10

2. A Systematic Mapping Study on Software Quality Control Techniques for Assessing Privacy in Information Systems;IEEE Access;2020

3. Mitigating Threats in a Corporate Network with a Taintcheck-Enabled Honeypot;Lecture Notes in Electrical Engineering;2019-12-19

4. IoT-Taint: IoT Malware Detection Framework Using Dynamic Taint Analysis;2019 International Conference on Computational Science and Computational Intelligence (CSCI);2019-12

5. SDN, slicing, and NFV paradigms for a smart home: A comprehensive survey;Transactions on Emerging Telecommunications Technologies;2019-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3