Human action recognition based on low- and high-level data from wearable inertial sensors

Author:

Lopez-Nava Irvin Hussein12ORCID,Muñoz-Meléndez Angélica2

Affiliation:

1. CONACyT -, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico

2. Instituto Nacional de Astrofísica, Óptica y Electrónica, San Andrés Cholula, Mexico

Abstract

Human action recognition supported by highly accurate specialized systems, ambulatory systems, or wireless sensor networks has a tremendous potential in the areas of healthcare or wellbeing monitoring. Recently, several studies carried out focused on the recognition of actions using wearable inertial sensors, in which raw sensor data are used to build classification models, and in a few of them high-level representations are obtained which are directly related to anatomical characteristics of the human body. This research focuses on classifying a set of activities of daily living, such as functional mobility, and instrumental activities of daily living, such as preparing meals, performed by test subjects in their homes in naturalistic conditions. The joint angles of upper and lower limbs are estimated using information from five wearable inertial sensors placed on the body of five test subjects. A set of features related to human limb motions is extracted from the orientation signals (high-level data) and another set from the acceleration raw signals (low-level data) and both are used to build classifiers using four inference algorithms. The proposed features in this work are the number of movements and the average duration of consecutive movements. The classifiers are capable of successfully classifying the set of actions using raw data with up to 77.8% and 93.3% from high-level data. This study allowed comparing the use of two data levels to classify a set of actions performed in daily environments using an inertial sensor network.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hybrid Optimization Approach for Human Activity Using Smartphone Sensors;2023 4th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI);2023-12-15

2. Prompted Contrast with Masked Motion Modeling: Towards Versatile 3D Action Representation Learning;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. Multi-channel network: Constructing efficient GCN baselines for skeleton-based action recognition;Computers & Graphics;2023-02

4. Optimal Deep Convolutional Neural Network with Pose Estimation for Human Activity Recognition;Computer Systems Science and Engineering;2023

5. Shifting Perspective to See Difference: A Novel Multi-view Method for Skeleton based Action Recognition;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3