High-Level Features for Recognizing Human Actions in Daily Living Environments Using Wearable Sensors

Author:

López-Nava Irvin,Muñoz-Meléndez Angélica

Abstract

Action recognition is important for various applications, such as, ambient intelligence, smart devices, and healthcare. Automatic recognition of human actions in daily living environments, mainly using wearable sensors, is still an open research problem of the field of pervasive computing. This research focuses on extracting a set of features related to human motion, in particular the motion of the upper and lower limbs, in order to recognize actions in daily living environments, using time-series of joint orientation. Ten actions were performed by five test subjects in their homes: cooking, doing housework, eating, grooming, mouth care, ascending stairs, descending stairs, sitting, standing, and walking. The joint angles of the right upper limb and the left lower limb were estimated using information from five wearable inertial sensors placed on the back, right upper arm, right forearm, left thigh and left leg. The set features were used to build classifiers using three inference algorithms: Naive Bayes, K-Nearest Neighbours, and AdaBoost. The F- m e a s u r e average of classifying the ten actions of the three classifiers built by using the proposed set of features was 0.806 ( σ = 0.163).

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3