Numerical research on impact performance of bridge columns with aluminum foam protection devices

Author:

Zhang Yuye1,Pan Ruiyang1ORCID,Xiao Feng1ORCID

Affiliation:

1. Department of Civil Engineering, Nanjing University of Science and Technology, Nanjing, China

Abstract

This article presents a new protection device using aluminum foam to enhance the impact resistance of bridge columns. First, the protection device is designed according to the characteristics of aluminum foam material. The geometric configuration and structure of the device are described. Second, the impact performance of bridge column is analyzed, including impact force analysis, damage analysis, and the influence of axial load. Third, three-dimensional solid element models of columns with and without the protection device are developed in order to verify the effect of the protection device. By comparing dynamic responses of vehicle impact on columns with and without the protection device, it is considered that the protection device has certain protection effect: after installing the protective device, the peak value of impact force reduces by 37.5%, the maximum displacement of column top reduces by 23.7%, the maximum stress at column bottom reduces by 51.6%, the maximum stress at column bottom reduces by 51.6%, the maximum acceleration of the vehicle reduces by 40.6%, and 86.84% of the impact energy is absorbed by the protection device. Finally, the devices with different foam thicknesses and porosities are comparatively analyzed to investigate the influence of these design parameters on impact performance. The results show that the increase in the thickness of aluminum foam has positive effects on the protection capability. The protection capability improves with aluminum foam porosity increasing when the porosity is less than 60%.

Funder

“Six-Talent Peaks” Project of Jiangsu Province

nanjing university of science and technology

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3