Affiliation:
1. School of Computer Science and Technology and Suzhou Institute for Advanced Study, University of Science and Technology of China, Hefei, P.R. China
Abstract
Spatial crowdsourcing is an emerging outsourcing platform that allocates spatio-temporal tasks to a set of workers. Then, the worker moves to the specified locations to perform the tasks. However, it usually demands workers to upload their location information to the spatial crowdsourcing server, which unavoidably attracts attention to the privacy-preserving of the workers’ locations. In this article, we propose a novel framework that can protect the location privacy of the workers and the requesters when assigning tasks to workers. Our scheme is based on mathematical transformation to the location while providing privacy protection to workers and requesters. Moreover, to further preserve the relative location between workers, we generate a certain amount of noise to interfere the spatial crowdsourcing server. Experimental results on real-world data sets show the effectiveness and efficiency of our proposed framework.
Subject
Computer Networks and Communications,General Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献