Toward location privacy protection in Spatial crowdsourcing

Author:

Ye Hang1ORCID,Han Kai1,Xu Chaoting1,Xu Jingxin1,Gui Fei1

Affiliation:

1. School of Computer Science and Technology and Suzhou Institute for Advanced Study, University of Science and Technology of China, Hefei, P.R. China

Abstract

Spatial crowdsourcing is an emerging outsourcing platform that allocates spatio-temporal tasks to a set of workers. Then, the worker moves to the specified locations to perform the tasks. However, it usually demands workers to upload their location information to the spatial crowdsourcing server, which unavoidably attracts attention to the privacy-preserving of the workers’ locations. In this article, we propose a novel framework that can protect the location privacy of the workers and the requesters when assigning tasks to workers. Our scheme is based on mathematical transformation to the location while providing privacy protection to workers and requesters. Moreover, to further preserve the relative location between workers, we generate a certain amount of noise to interfere the spatial crowdsourcing server. Experimental results on real-world data sets show the effectiveness and efficiency of our proposed framework.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Mobility Modeling in Crowdsourcing Application to Prevent Inference Attacks;Future Internet;2024-08-28

2. A privacy protection solution based on data aggregation and batch authentication;Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond;2022-10-17

3. Research on privacy protection of dummy location interference for Location-Based Service location;International Journal of Distributed Sensor Networks;2022-09

4. Iterative Spatial Crowdsourcing in Peer-to-Peer Opportunistic Networks;Electronics;2020-07-02

5. Preserving Location Privacy in Spatial Crowdsourcing Under Quality Control;IEEE Access;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3