Iterative Spatial Crowdsourcing in Peer-to-Peer Opportunistic Networks

Author:

Phuttharak JurairatORCID,Loke Seng W.ORCID

Abstract

Spatial crowdsourcing is a potentially powerful method for incorporating human wisdom into mobile computations to solve problems while exploiting the advantages of mobility and context-awareness. This paper proposes and investigates task assignments and recruitment in iterative spatial crowdsourcing processes to find regions of particular interest among a collection of regions. We consider cases where associations between regions can be exploited to reduce costs and increase efficiency in crowdsourcing. We describe five approaches, incorporated into crowdsourcing algorithms, for reducing the cost (the number of queries required) and increasing the efficiency (reducing the number of rounds of querying required) in using such spatial crowdsourcing. We demonstrate the performance improvements gained using these approaches based on simulation scenarios. The findings show the interplay and relationships among our proposed approaches using a range of metrics including responses, energy consumption, costs, and time usage. These metrics are demonstrated via a range of scenarios, showing that our proposed approaches can lead to improved performance over randomly choosing regions for inquiry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3