Analytical evaluation of geometric dilution of precision for three-dimensional angle-of-arrival target localization in wireless sensor networks

Author:

Zhang Jiao12,Lu Jianfeng1ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

2. Beijing Institute of Special Electromechanical Technology, Beijing, China

Abstract

This article focuses on the evaluation of geometric dilution of precision for three-dimensional angle-of-arrival target localization in wireless sensor networks. We calculate a general analytical expression for the geometric dilution of precision for three-dimensional angle-of-arrival target localization. Unlike the existing works in the literature, in this article, no assumptions are made regarding the observation ranges, noise variances, or the number of sensors in the derivation of the geometric dilution of precision. Necessary and sufficient conditions regarding the existence of geometric dilution of precision are also derived, which can be readily used to evaluate the observability of three-dimensional angle-of-arrival target localization in wireless sensor networks. Moreover, a concise procedure is also presented to calculate the geometric dilution of precision when it exists. Finally, several examples are used to illustrate our results, and it is shown that the performance of the proposed regular deployment configurations of angle-of-arrival sensors is better than the one with random deployment patterns.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convex Combination for Wireless Localization Using Biased RSS Measurements;International Journal of Distributed Sensor Networks;2023-12-20

2. A Clustering-Based 3D Localization in Wireless Sensor Networks Using RSSI and AoA;SN Computer Science;2023-09-05

3. Path loss model based on exponential water cycle algorithm for wireless sensor network;International Journal of Communication Systems;2023-07-31

4. Source Localization Using RSS Measurements with Sensor Position Uncertainty;International Journal of Distributed Sensor Networks;2023-07-17

5. Toward UWB Impulse Radio Sensing: Fundamentals, Potentials, and Challenges;UWB Technology - New Insights and Developments;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3