Convex Combination for Wireless Localization Using Biased RSS Measurements

Author:

Wang Qi1ORCID,Li Fei1ORCID,Shao Teng2ORCID,Xu Chao3ORCID

Affiliation:

1. School of Electronic Engineering, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China

2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China

3. School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710061, China

Abstract

Received signal strength- (RSS-) based localization in wireless sensor networks (WSNs) has attracted significant attention due to its advantages of low cost and simple implementation. In practice, RSS measurements may suffer from sensor biases, which deteriorates the localization accuracy. However, most of the existing localization methods are designed for bias-free measurements. In this paper, we propose a convex combination method for RSS localization in the presence of sensor biases. The parameter vector composed of unknown location and sensor biases is estimated simultaneously by using a convex combination of some virtual points. These virtual points form a convex hull, into which the parameter vector falls with large probability. By this, the original nonconvex estimation problem is converted to be convex. Numerical examples demonstrate the superiority of the proposed method in terms of localization accuracy, compared to the existing semidefinite programming (SDP) methods.

Funder

Natural Science Research Project of Anhui Educational Committee

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3