APDS: A framework for discovering movement pattern from trajectory database

Author:

Yuan Guan123ORCID,Wang Zhongqiu12,Wang Zhixiao1,Zhang Fukai4,Yuan Li1,Zhang Jian1

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China

2. Digitization of Mine, Engineering Research Center of Ministry of Education, Xuzhou, China

3. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, China

4. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China

Abstract

Currently, the boosting of location acquisition devices makes it possible to track all kinds of moving objects, and collect and store their trajectories in database. Therefore, how to find knowledge from huge amount of trajectory data has become an attractive topic. Movement pattern is an efficient way to understand moving objects’ behavior and analyze their habits. To promote the application of spatiotemporal data mining, a moving object activity pattern discovery system is designed and implemented in this article. First of all, raw trajectory data are preprocessed using methods like data clean, data interpolation, and compression. Second, a simplified density-based trajectory clustering algorithm is implemented to find and group similar movement patterns. Third, in order to discover the trends and periodicity of movement pattern, a trajectory periodic pattern mining algorithm is developed. Finally, comprehensive experiments with different parameters are conducted to validate the pattern discovery system. The experimental results show that the system is robust and efficient to analyze moving object trajectory data and discover useful patterns.

Funder

fundamental research funds for the central universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3