Passive localization of signal source based on wireless sensor network in the air

Author:

Wan Pengwu1,Ni Yongjing23,Hao Benjian1,Li Zan1,Zhao Yue1

Affiliation:

1. State Key Laboratory of Integrated Services Networks, Xidian University, Shaanxi, China

2. College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China

3. School of Information Science and Engineering, Yanshan University, Qinhuangdao, China

Abstract

Passive localization of the wireless signal source attracts a considerable level of research interest for its wide applications in modern wireless communication systems. To accurately locate the signal source passively in the downtown area, sensors are carried on the unmanned aerial vehicles flying in the air, where the wireless sensor network can be established with an optimal geometry configuration conveniently. In this case, the influence of multipath fading can be avoided and the time difference of arrival measurement can be estimated precisely in Rician channel. By employing the operating center as a calibration source to refine the positions of the unmanned aerial vehicles, we present a simplified formulation of the time difference of arrival localization method according to the min-max criterion. To accurately estimate the position of the source, the nonlinear equations are relaxed using semidefinite programming to obtain an initial solution, which is utilized as the starting point of the iterative algorithm to refine the solution. In the simulation section, the validity and the robustness of the proposed methods are verified through the performance comparison with the Cramer–Rao lower bound.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3