Abstract
This paper addresses the problem of time difference of arrival (TDOA) based passive target localizationand proposes an improved chaos-driven hybrid differential evolution (DE) algorithm and butterfly optimization algorithm (BOA), named ICDEBOA, to solve this complex optimization problem. The proposed algorithm consists of a new mutation strategy with the mechanisms of the BOA algorithm incorporated into the DE algorithm. To boost optimization effectiveness, chaos theory is employed to adjust the control parameter values. The considered localization problem is formulated using the maximum likelihood estimator. To perform the accuracy comparison, the convex constrained weighting least squares algorithm is applied to the considered localization problem as the widely used method in literature. The statistical analysis shows that the proposed modifications to the ICDEBOA algorithm improve its optimization performance, as demonstrated by the improved performance on the CEC2014 benchmark problems. The ICDEBOA algorithm is also shown to be more robust than existing algorithms in noisy environments. Numerical simulation results show that the proposed ICDEBOA algorithm meets the CRLB and achieves better performance than the CWLS, DE, and BOA algorithms.
Funder
Serbian Ministry of Education and Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献