In-vehicle localization based on multi-channel Bluetooth Low Energy received signal strength indicator

Author:

Yuan Gao1ORCID,Ze Zhao1,Changcheng Huang2,Chuanqi Han1,Li Cui1

Affiliation:

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2. Carleton University, Ottawa, ON, Canada

Abstract

High-precision in-vehicle localization is the basis for both in-vehicle location-based service and the analysis of the driver or passengers’ behaviors. However, interferences like effects of multipath and reflection of the signals significantly raise great challenges to the positioning accuracy at in-vehicle environment. This article presents a novel high-precision in-vehicle localization method, namely, the LOC-in-a-Car, based on functional exploration and full use of multi-channel received signal strength indicator of Bluetooth Low Energy. To achieve higher positioning precision, a hierarchical computation algorithm based on Adaboost and support vector machine is proposed in our method. In particular, we also proposed a device calibration method to deal with the heterogeneity of different smartphone terminals. We developed an Android app as a component in which the channel time-sharing acquisition method is fulfilled, enabling smartphones to distinguish data from multi-channels. The system performance is verified via intensive experiments, of which the results show that our method can distinguish the locations of driver or passengers with an accuracy ranging from 86.80% to 92.02% for each seat on Nexus phone, and the overall accuracy is 89.86%, with standard deviation of 2.64%. On Huawei phone, the accuracy ranges from 85.43% to 93.33% with overall accuracy of 89.75% and standard deviation of 3.07%. Both outperform the existing methods.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manipulation of the Multi-Vehicle System for the Industrial Applications;EAI Endorsed Transactions on Context-aware Systems and Applications;2023-10-02

2. Cooperative Navigation of Personal Electronic Devices Formation Movement;Integrated Computer Technologies in Mechanical Engineering - 2022;2023

3. RSSI study of wireless Internet of Things technologies;Journal of Physics: Conference Series;2022-09-01

4. Multi-Channel Information Collection and Intelligent Macro Analysis Algorithm for Rural Revitalization based on Database System Optimization;2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS);2022-05-25

5. Detecting Mobile Producer’s Position in a Wireless Named Data Network Environment Using Signal Strength;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3