Affiliation:
1. Tsinghua University, Beijing, China
2. Hong Kong University of Science and Technology, Hong Kong
3. Hong Kong University of Science and Technology
Abstract
Wireless indoor positioning has been extensively studied for the past 2 decades and continuously attracted growing research efforts in mobile computing context. As the integration of multiple inertial sensors (e.g., accelerometer, gyroscope, and magnetometer) to nowadays smartphones in recent years, human-centric mobility sensing is emerging and coming into vogue. Mobility information, as a new dimension in addition to wireless signals, can benefit localization in a number of ways, since location and mobility are by nature related in the physical world. In this article, we survey this new trend of mobility enhancing smartphone-based indoor localization. Specifically, we first study how to measure human mobility: what types of sensors we can use and what types of mobility information we can acquire. Next, we discuss how mobility assists localization with respect to enhancing location accuracy, decreasing deployment cost, and enriching location context. Moreover, considering the quality and cost of smartphone built-in sensors, handling measurement errors is essential and accordingly investigated. Combining existing work and our own working experiences, we emphasize the principles and conduct comparative study of the mainstream technologies. Finally, we conclude this survey by addressing future research directions and opportunities in this new and largely open area.
Funder
NSFC Major Program
NSFC
NSFC Distinguished Young Scholars Program
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献